Extreme learning machines for soybean classification in remote sensing hyperspectral images
نویسندگان
چکیده
This paper focuses on the application of Extreme Learning Machines (ELM) to the classification of remote sensing hyperspectral data. The specific aim of the work is to obtain accurate thematic maps of soybean crops, which have proven to be difficult to identify by automated procedures. The classification process carried out is as follows: First, spectral data is transformed into a hyper-spherical representation. Second, a robust image gradient is computed over the hyper-spherical representation allowing an image segmentation that identifies major crop plots. Third, feature selection is achieved by a greedy wrapper approach. Finally, a classifier is trained and tested on the selected image pixel features. The classifiers used for feature selection and final classification are Single Layer Feedforward Networks (SLFN) trained with either the ELM or the incremental OP-ELM. Original image pixel features are computed following a Functional Data Analysis (FDA) characterization of the spectral data. Conventional ELM training of the SLFN improves over the classification performance of state of the art algorithms reported in the literature dealing with the data treated in this paper. Moreover, SLFN-ELM uses less features than the referred algorithms. OP-ELM is able to find competitive results using the FDA features from a single spectral band. & 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملMulti-Channel Morphological Profiles for Classification of Hyperspectral Images Using Support Vector Machines
Hyperspectral imaging is a new remote sensing technique that generates hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. Supervised classification of hyperspectral image data sets is a challenging problem due to the limited availability of training samples (which are very difficult and costly to obtain in practice) and the extreme...
متن کاملSubspace Feature Analysis of Local Manifold Learning for Hyperspectral Remote Sensing Images Classification
Dimensionality reduction and segmentation have been used as methods to reduce the complexity of the representation of hyperspectral remote sensing images. In this study, a new object-oriented mapping approach is proposed based on nonlinear subspace feature analysis of hyperspectral remote sensing images. Nonlinear local manifold learning approaches for feature extraction were utilized to obtain...
متن کاملBayesian Learning with Gaussian Processes for Supervised Classification of Hyperspectral Data
Recent advances in kernel machines promote the novel use of Gaussian processes (GP) for Bayesian learning. Our purpose is to introduce GP models into the remote sensing community for supervised learning as exemplified in this study for classifying hyperspectral images. We first provided the mathematical formulation of GP models concerning both regression and classification; described several GP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 128 شماره
صفحات -
تاریخ انتشار 2014